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Abstract 
A method of calculation of the thermodynamic 
partition function from accurate X-ray diffraction data 
has been developed. Dynamical matrix elements (force 
constants) for LiH were calculated on the basis of X-ray 
data. From these force constants, the isotope-reduced 
partition-function ratio (/3 factor) for the LiH (LID) 
crystal and the separation factor C~Dm for the isotope 
exchange in the solid-gas Li(H,D)-(Hz, D2) system 
have been calculated. The temperature dependence of 
the isotope separation factor shows good agreement 
with the experimental data. 

1. Introduction 
The final stage of an accurate single-crystal X-ray 
diffraction data analysis is often the mapping of 
different forms of the electron density (total, valence, 
deformation etc.) and the construction of an electron- 
dynamical model for the crystal studied. The qualitative 
conclusions usually concern the interatomic chemical 
bonding. Meanwhile, a number of methods have 
already been developed to calculate some crystal 
characteristics such as molecular dipole moments, 
electrostatic field and potential, crystal energy, electric 
field gradient, diamagnetic susceptibility, optical linear 
and nonlinear characteristics etc. These results can be 
found in reviews (e.g. Spackman, 1992) and books 
(Tsirelson & Ozerov, 1996; Coppens, 1997). The aim of 
this work is to develop a method of calculating the 
thermodynamic properties of a crystal, specifically the 
isotopic reduced partition-function ratio/3, and to apply 
this function to the calculation of the isotope separation 
factor ct for interacting gas-crystal systems. 

For the isotope exchange reaction 

2MeH + D 2 ~-- 2MeD + H 2 

the equilibrium isotope separation factor is determined 
as 

OtH/D ~'~ {[H]/[O]}in solid phase/{[n]/[O]}in gas phase 

(here [H] and [D] mean overall equilibrium concen- 
trations of atoms regardless of their specific chemical 
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species, i.e. [H]gas = [HO]gas + 2[n2]gas etc.). The equi- 
librium isotope separation factor can be calculated 
(Andreev & Sicking, 1987) as the ratio 

where 

~% =/3Mo./Mer,//3.2/D2, 

/3m XHn 

[ XH.J A'D. 

is the so-called isotope-reduced partition-function ratio 
or /3 factor (Bigeleisen & Mayer, 1947; Varshavskii & 
Vaisberg, 1957). In this equation, Z values are the 
partition functions of the isotope forms XH,, and XD,, 
and m is the number of equivalent atoms in the mole- 
cule to be substituted. The superscripts quant and class 
refer to the quantum-mechanical and classical partition 
functions. The /3 factor is regarded as a fundamental 
property of a substance in the theory of equilibrium 
isotope effects. Whereas the separation factor a belongs 
to the exchange reaction, the /3 factor belongs to the 
individual substance and its value indicates the ability 
of this substance to concentrate the heavy isotope in 
chemical exchange reactions. If one knows the/3 factors 
for a group of substances, one can calculate separation 
factors for all probable reactions between them; that is 
why the/3 factor is a much more general function than 
the separation factor itself. 

Division of Z quant by Z class simplifies calculations, 
eliminates the necessity to take into account symmetry 
numbers and is a well established procedure in the 
theory of equilibrium isotope effect. It is easy to 
calculate the /3 factor for gaseous and/or liquid 
substances. In this case, a reasonably accurate value for 
the /3 factor can be calculated using vibrational 
frequencies of isotopic forms of the given substance. 
However, if the substance is a crystal, serious problems 
arise in calculations because of the continuous nature of 
vibrational spectra of crystals. Unlike molecules with a 
few vibrational frequencies, a crystal has many funda- 
mental frequencies (of the order of magnitude of 
Avogadro's number) and crystal vibrational properties 
are described in terms of the vibrational frequency 
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distribution function g(u). This function determines the 
number of vibrational frequencies in the unit interval 
[g(u)Au is the number of frequencies in the interval 
A u]. To calculate the /3 factor for a crystal, one has to 
know this function both for the initial and for the 
isotope-substituted crystal. In all cases, some assump- 
tions concerning the interatomic force constants of the 
crystal must be introduced. This explains why there are 
only a few publications on the calculations of/3 factors 
for crystalline solids. For the sake of comparison, it 
bears mentioning that the number of publications 
describing /3-factor calculations for gases and liquids 
reaches the hundreds (see Knyazev et al., 1992, and 
references therein). Moreover, many calculations of the 
/3 factor for crystals are based on the simple Einstein 
oscillator model. This approach is rather crude because 
of the strong frequency dispersion. In general, direct 
integration over the first Brillouin zone is possible 
provided the force constants (the dynamical matrix) of 
a crystal are known. Because the/3 factor is a thermo- 
dynamic function of a crystal, the method of moments 
(Maradudin et al., 1977) or other methods based on the 
summation of fast-converging series can be used. 

The/3-factor calculations in the case of ionic crystals 
is developed in the present work. The calculation of the 
isotope effects between the solid and gas phases in the 
Li(H, D)-(H2, D2) system on the basis of accurate 
X-ray diffraction data has been performed. The choice 
of this system for theoretical studies was determined by 
the following factors. LiH contains the lightest atoms. 
This facilitates the analysis of the results. There is also a 
strong dispersion of optical modes in this crystal and, as 
a result, the Einstein approximation is not valid. Finally, 
for the assessment of our method, accurate X-ray 
diffraction data (Calder et aL, 1962, and especially 
Vidal-Valat et al., 1992), experimental data on phonon 
spectra, hydrogen-isotope separation factors and 
calculation of the separation factor in the LiH-H2(D2) 
system by alternative methods are all available in the 
literature (Benedek et al., 1969). 

In order to estimate the atomic electron-dynamical 
parameters, an analysis of the accurate X-ray diffraction 
data for the LiH (LID) single crystals has been 
performed. These parameters, once determined, were 
then used to evaluate the interatomic potentials, the 
force constants (elements of the dynamical matrix), 
moments of the vibration frequency distribution func- 
tion and thermodynamic functions including the /3 
factors and finally the ot values for the system studied. 

Coppens, 1978). In the general expression 

Patomic(r) = PcPcore + Pvg'3 pvalence(K'r) 
4 1 

-4-)-~x"3Rt(x"r) Y~ PlmYtm(r/r), (1) 
/=0  m = - l  

only the two first spherically symmetric terms were 
considered. All deformation terms were omitted 
because of large parameter correlation or symmetry 
restrictions. The set of structure amplitudes from the 
paper of Vidal-Valat et al. (1992) measured at room 
temperature and treated by the authors for all neces- 
sary corrections (putting aside the stated violation of 
the Born-Oppenheimer  approximation in LiH) was 
finally chosen because it provided both the best fit of 
observed and calculated values and the optimum 
conditions to proceed with the calculation of the 
isotope separation factor and the comparison with 
experiment. Multipole parameters were derived from 
least-squares refinement using the M O L L Y  program 
(Hansen & Coppens, 1978). The occupancies of valence 
orbitals (Pv), the radial expansion--contraction values x' 
and temperature coefficients B for both atoms are listed 
in Table 1. Two core electrons for Li were taken into 
account in p .. . .  calculations. The discrepancy factors 
are presented as well. 

Scattering factors for neutral atoms and ions were 
used. The latter gave the charge value close to the 
quantum-chemical ionic charge 0.8e.t 

The multipole model enables us to represent the 
electron density (ED) in the analytical form. The total 
and deformation ED maps did not show any unusual 
features. They showed the generally accepted repre- 
sentation of the ionic bonds with a small admixture of 
covalent interaction, which manifests itself as a small 
positive region along the Li-H bond. 

3. Estimation of dynamic matrix elements 

Harmonic approximation and two-particle interactions 
only were taken into account. This model is valid for 
crystals with localized valence electrons. 'Localization' 
means that electrons are spatially located close to the 
atomic sites, which minimizes the overlap of multipoles 
centered at different nuclei. This requirement is better 
satisfied by ionic crystals than it is with metals and 
covalent crystals. 

According to Lazarev et aL (1985), the distance- 
dependent potential energy of two interacting pseudo- 
a toms/z  and v in a crystal is 

2. Multipole refinement for LiH (LID) 

The accurate X-ray diffraction data presented by 
Calder et al. (1962) and Vidal-Valat et al. (1992) were 
included in the calculation procedure in the framework 
of the Hansen-Coppens multipole model (Hansen & 

a, = ,I,c + a'nc (2) 

f~)c ~ -  f l )nn -Jl- Iffl)en -Jl- f ~  ee , (3) 

t The result 0.2e presented by Ozerov et al. (1996) corresponds to the 
difference between the charges of ions in the initial approximation 
(le) and the resulting charges. 



OZEROV,  BOCHKAREV,  SAZONOV, SAMOILOV A N D  M A G O M E D B E K O V  449 

Table 1. Results o f  the multipole refinement o f  the 
structure parameters of  the LiH crystal 

Scale factor 0.9800 (21) 
Temperature parameters (~z) 

BLi 1.1713 (54) 
Bn 2.3456 (1323) 

Parameters of the multipole modes 
Li x' 2.1816 (2522) 
H U 0.8225 (176) 
Li P~ 0.1504 (521) 
H P~ 1.849 (52) 
R(F) 0.0103 
Rw(F) 0.0025 
R(F 2) 0.0186 
Rw(F 2) 0.0050 
GOF 3.05 

where ¢c and (1)nc a r e  Coulomb and non-Coulomb 
potentials, respectively. Each term in these sums can be 
presented in the form 

• , , = z u z , / l R I  (4) 

tff~en : --Zl. t f dr Patv(r)/ir - R[ - z,  f dr Patu(r)/lr - RI 

(5) 

dPee = f f  drdr '  Pat u(r)Patv(r')/ir -- r' I. (6) 

Here zu and z,  are the nuclear charges, IRI is the 
internuclear distance, and nn, en and ee denote the 
nuclear-nuclear, nuclear-electron, and electron-elec- 
tron interactions. The electron-density functions Pat,/z(r) 
and Pat, v(r) for atoms /z and u can be presented as a 
multipole series. This allows the calculation of the 
integral (6) analytically according to the procedure 
described by Su & Coppens (1992). The Hart ree-Fock 
core and valence radial wavefunctions were replaced by 
the optimized Slater exponents. The parameters for 
these exponents were taken from the tables of Clementi 
& Raimondi (1963). Such a substitution had no influ- 
ence on the results of our calculations. 

The ~ee potential cannot be calculated analytically. 
Therefore, the asymptotic method was used for the 
calculation of the Coulomb part of ~ee 

lim (~)ee = PuP,/IRI,  (7) 
R----~ oc 

where Pu and P ,  are the electron core occupancies for 
the # and u atoms. All corrections to (1)ee due to the 
spatial dispersion of the electron density were included 
in the term ¢,¢. Because of the rapid decrease of the 
repulsive forces with distance, this term was written as 
A/IRI  n, where A and n are constants. The value of n 
depends on the principal quantum numbers for the 
filled electron shells of the interacting atoms (Ashcroft 
& Mermin, 1976; Shanker et al., 1978). In accordance 
with Urusov (1987), the number n = 5 was chosen for 
the evaluation of force constants for lithium hydride. In 
order to find the value of A, the crystal energy 
minimum principle was used. The energy of a crystal in 

a state of equilibrium is the sum 

E(R) = Ec(R ) + CsA/R 5, (8) 

where Ec is the Coulomb energy calculated from 
formulae (5), (6) and (8); (75 is the corresponding lattice 
sum (Ashcroft & Mermin, 1976). Therefore, the 
potential energy for a pair of interacting atoms is 
determined as 

¢, = (z, ,z.  + P . P . ) / R  - z,,V,,,  e(R) 

- z.V.~,<(R) + A/R",  (9) 

where Vu.<(R ) is the electrostatic potential created by 
the electrons of the uth atom at the /z th  atom nucleus: 

Vu,<(R ) -- V~(R) + Vv(R ) + Vd(R ). (10) 

According to Hansen & Coppens (1978), c, v and d 
subscripts denote core, valence and deformation 
contributions, respectively. Each term in (10) has the 
form 

V i ( R  ) = P4A*n,I(R, 2KI~i)Y i, (11)  

where Pi, x' and ~ are values related to multipole 
expansion, ~ being the optimized Slater exponent index 
(~H,1, = 1.0, ~Li,1, = 2.69, ~Li.2, = 0.64). Expressions for 
functions A,]*j depend on the n and I quantum numbers 
of the wavefunction corresponding to a given multipole 
(Su & Coppens, 1992). The following functions were 
used: 

n~, o = { 2 -  exp(-2KseR)[2x~n + 2]}/2R (12) 

A~, 0 = {24 - exp(-Zx~R)[(Zx~R) 3 + 6(2x~R) 2 

+ 18(2x~R) + 24]}/24R, (13) 

as well as their first and second derivatives with respect 
to R. All these functions approach the Coulomb limits 
as R ~ ~ .  Therefore, one can treat the second term in 
these formulas as the value related to the effective 
shielding of charges. 

4. Calculation of reduced-isotope partition-function 
ratio 

The value of the/3 factor for a crystal can be calculated 
as 

i i i  ]shtu (k)12] in/7 = ~ In I ~ Lu.(k)_] dV. 
i=1 V 

(14) 

Here V is the first Brillouin zone, ui(k ) = hcvi(k) /kT 
are the so-called 'reduced' frequencies, vi(k) are 
vibrational frequencies in cm -1 corresponding to 
wavevector k and r is the number of atoms in the unit 
cell. Squares of vibrational frequencies are the eigen- 
values of the dynamical matrix D(k) with elements 
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(Landau & Lifshits, 1976) 

O,~t~(k) (MuM~,) -1/2 ~_, "~' = A,~t3(R) exp(ikR ) . (15) 
R 

Here k is the wavevector, A~t ~ are force constants, /z 
and u are basis atom indices (from 1 to r), c~ and 13 are 
direction indexes (x, y or z), M is the atomic mass, 
R = la + mb + nc, a, b and c being the basis vectors of 
the direct lattice and 1, m and n representing integers. 
Instead of direct integration over the first Brillouin 
zone according to (14), various other methods can be 
used, the most convenient for crystals being the 
'method of moments'.  The nth moment /z,, of the 

3 r N  n 
spectral density of phonons is equal to (1 /3rN)  Y~i=l vi, 
where 3rN is the overall number of frequencies. 
Calculation of moments can be reduced to the matrix 
products and the summation of matrix elements. 
Algebraic solutions obtained this way can be useful for 
theoretical interpretation of isotope effects. 

On the basis of moments, the value of the /3 factor 
can be calculated as (Bigeleisen, 1958) 

In/3 = (1/24)(hc/k T) 2 t~(/z2) - (1/2880)(hc/k T) 4t~(/z4) 

+ (1/181440)(hc/kT)68(lz6) 

- (a/9676800)(hc/kT)SS(iXs)  

+ ( 5 / 2 3 9 5 0 0 8 0 0 0 0 ) ( h c / k T ) l ° 8 ( # 1 o ) - . . . ,  (16) 

where ,~(/z2,,) = P'z,, - #~,,- 

5. Application to the LiH-Hz(D2) system 

The first-, second- and third-nearest neighbors in the 
crystal lattice of LiH were taken into account in the 
summation procedure over 27 uniformly distributed 
points in the irreducible part of the first Brillouin zone. 
As calculation showed, this number of points was 
sufficient. While for isotope substitution of elements 
heavier than hydrogen no more than the first three even 
moments are needed in formula (16), in our case (H/D 
substitution) as many as the first 11 even moments 

appeared to be necessary in order to achieve the 
needed accuracy (about 2%). The moments of the 
phonon spectrum for LiH and LiD were calculated on 
the basis of force constants determined according to the 
scheme presented above and were used in the calcula- 
tion of/3 and the separation factor. It should be noted 
that the dispersion of the optical mode of the phonon 
spectrum for these hydrides is significant. This is an 
additional argument against using the simple Einstein 
three-dimensional-oscillator model for calculating the 
thermodynamic properties of ionic hydrides. 

The temperature dependence of the calculated 
hydrogen isotope separation factor ot is presented in 
Fig. 1 together with the experimental results by Ryskin 
& Stepanov (1969). One can see that the results of our 
calculations agree reasonably well with the experiment. 

6. Conclusions 

Reasonable agreement between experimental and 
theoretical separation factors suggests that the method 
developed can be used for estimating the/3 factors for 
ionic crystals, including the substitution of hydrogen for 
deuterium and tritium. It should be emphasized that 
X-ray diffraction data were successfully used for 
calculating the physico-chemical characteristics of the 
gas-solid system. This is particularly important because 
many ionic crystal solids are of geochemical interest 
and their /3 factors are important for geochemical 
research studies. The phonon-frequency-distribution 
data for these crystals are limited and the approach 
presented here may be useful. 
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Fig. 1. Temperature dependence of the separation factor aDm in the 
system LiH(D)(solid)-H2(D2) 

References 

Andreev, B. M. & Sicking, G. H. (1987). Ber. Bunsenges. Phys. 
Chem. 91, 177-184. 

Ashcroft, N. M. & Mermin, N. D. (1976). Solid State Physics. 
New York: Holt, Rinehart and Winston. 

Benedek, G., Wallis, R. E, Ipatova, I. E, Klochikhin, A. A., 
Maradudin, A. A. (1969). Fiz. Tverd. Tela, 11, 382-391. (In 
Russian.) 

Bigeleisen, J. (1958). Proceedings of International Symposium 
on Isotope Separation, Amsterdam, 1957, p. 121. 

Bigeleisen, J. & Mayer, M.-G. (1947). J. Chem. Phys. 15, 
261-267. 

Calder, R. S., Cochran, W., Griffiths, D. & Lowde, R. D. 
(1962). J. Phys. Chem. Solids, 23, 621--632. 



OZEROV,  B O C H K A R E V ,  SAZONOV,  S A M O I L O V  A N D  M A G O M E D B E K O V  451 

Clementi, E. & Raimondi, D. (1963). J. Chem. Phys. 38, 
2686-2689. 

Coppens, P. (1997). X-ray Charge Densities and the Chemical 
Bond. Oxford University Press. 

Hansen, N. & Coppens, E (1978). Acta Cryst. A34, 
910-923. 

Knyazev, D. A., Myasoedov, N. E & Bochkarev, A. V. (1992). 
Usp. Khim. 61, 384-414. Engl. transl: Russ. Chem. Rev. 
(1992), No. 2. 

Landau, L. D. & Lifshits, E. M. (1976). Statisticheskaya Fizika. 
Moscow: Nauka. (In Russian.) 

Lazarev, A. N., Mirgorodskii, A. E & Smirnov, M. B. (1985). 
Kolebatelnye Spektry i Dinamika Ionno-Kovalentnykh 
Kristallov. Leningrad: Nauka. (In Russian.) 

Maradudin, A. A., Montroll, E. W., Weiss, G. H. & Ipatova, 
I. E (1977). Theory of  Lattice Dynamics in the Harmonic 
Approximation, 2nd ed. New York: Academic Press. 

Ozerov, R. P., Sazonov, A. B. & Khleskov, V. I. (1996). Zh. Fiz. 
Khim. 70, 1239-1244. (In Russian.) 

Ryskin, G. Ya. & Stepanov, Yu. E (1969). Zh. Eksp. Teor. Fiz. 
56, 541-550. 

Shanker, J., Gupta, A. E & Sharma, O. E (1978). Philos. Mag. 
B37, 329-339. 

Spackman, M. (1992). Chem. Rev. 92, 1769-1797. 
Su, Z. & Coppens, E (1992). Acta Cryst. A48, 188-197. 
Tsirelson, V. G. & Ozerov, R. E (1996). Electron Density and 

Chemical Bonding in Crystals. Bristol/Philadelphia: IOP 
Publishing. 

Urusov, V. S. (1987). Teoreticheskaya Kristallokhimiya. 
Moscow: MGU. (In Russian.) 

Varshavskii, Ya. M. & Vaisberg, S. E. (1957). Usp. Khim. 26, 
1434-1468. (In Russian.) 

Vidal-Valat, G., Vidal, J. E, Kurki-Suonio, K. & Kurki-Suonio, 
R. (1992). Acta Cryst. A48, 46-60. 


